

Spectral Noise Measurements supply Instantaneous Traffic information for Multidisciplinary Mobility projects

Luc Dekoninck, Dick Botteldooren, Bert De Coensel and Luc int Panis

Spatial and temporal variability in noise and air pollution

Did you imagine the matching sound ???

Dekoninck, Luc, Dick Botteldooren, and Luc Int Panis.

"An Instantaneous Spatiotemporal Model to Predict a Bicyclist's Black Carbon Exposure Based on Mobile Noise Measurements."

ATMOSPHERIC ENVIRONMENT 79 (2013): 623–631.

Mobile noise mapping to capture spatial resolution

10 second temporal resolution at average speed of 18 km/h

==

spatial resolution of 50 m along the road network

ter.noi*s*e

HAMBURG 2016

City wide mobile noise mapping

Dekoninck, Luc, Dick Botteldooren, and Luc Int Panis.

"Using city-wide mobile noise assessments to estimate annual exposure to Black Carbon.",

Environment international 83 (2015): 192-201.

Benefits of quantifying traffic through spectral noise assessments

- Increase local variability
- Enables spatiotemporal modelling
- Disentangles meteorological and traffic effects

- Improves Land-Use modelling
- Route sensitive and activity specific
 Personal exposure assessment possible

Predict Personal exposure to BC

- Mobile bike and in-vehicle exposure
- Extrapolate to Flemish region using noise maps as a proxy
- Activity Specific and Route sensitive models
 - Bike, Car, Indoor (home and work)
 - Instantaneous 'micro' Land-Use Regression (μLUR)
 - Non-linear modeling (generalized additive model)
- External validation (VITO measurement campaign)

Personal exposure to BC

293 person-days, summer and winter

No information of external campaign was used in the activity specific models

Variability in space and time for noise/air pollution

noise measurements

Temporal information

HAMBURG 2016

Can we do something similar at fixed (dwelling) locations ?

Exposure at facade in busy street

Pilot (cont.): Exposure at facade

Pilot (cont.): BC exposure by wind direction

Frequency of counts by wind direction (%)

Frequency of counts by wind direction (%)

Frequency of counts by wind direction (%)

Dwelling All wind directions high exposure

In-city background Selected wind directions high exposure Short episodes of high exposure Remote background

Eastern wind directions high exposure Stable atmosphere!!

Pilot (cont.): Overview of the models

								F-values						
	Rackground station	Noise	oise Deviance ameter explained		AIC		Intercept	log(BCbkg)	Wind speed	Tempera-	Noise	# samples		
	Background station	parameter					(ng/m3)			ture	parameter			
(Remote background	LOLF,bike		28.8%	52	90	1432	17	62	58	218	1961		
	Remote background	LAeq		28.6%	52	99	1432	16	62	57	71	1961		
	Remote background	LA50		28.3%	53	07	1432	16	60	59	72	1961		
	Remote background	LA05		28.2%	53	10	1429	17	61	61	66	1961		
l	Remote background	LA95		26.9%	53	45	1430	18	60	64	54	1961		
	Near major city	LOLF,bike		26.2%	56	⁵ L _{OLF, bike} does not conserves acoustical energy								
	Near major city	LA50		25.9%	56									
	Near major city	LAeq		25.8%	56	R	est nre	dictor o	f Black	Carbon	in the	exnerin	hent	
	Remote background	LOLF,eq		25.1%	53				Didek	Curbon		слрепп		
	Near major city	LA95		24.8%	57	25	1110	77	12	17	96	1961		
	Near major city	LA05		23.1%	57	69	1106	77	17	22	81	1961		
	Near major city	LOLF,eq		22.8%	57	78	1110	72	4	26	78	1961		
1	In-city park	LOLF,eq		21.2%	53	59	1238	49	14	26	49	1961		
	In-city park	LOLF,bike		20.6%	53	70	1237	56	23	20	131	1961		
	In-city park	LAeq		20.6%	53	71	1236	56	23	23	130	1961		
	In-city park	LA50		20.6%	53	71	1237	55	23	22	130	1961		
	In-city park	LA95		20.6%	53	75	1238	51	21	18	43	1961		
1	In-city park	LA05		20.0%	53	89	1233	55	21	26	39	1961		

Pilot (cont.): BC exposure GAM models (L_{OLF})

nter.noize

Pilot (cont.): Diurnal pattern in model quality...

Count of 15min episodes

For 30% of the episodes during rush hour at low wind speed, the in-city background is **not correlating** with dwelling exposure

The nearby major road disturbs the in-city background location

Conclusion

- Spectral noise measurements capture traffic densities and traffic dynamics
- Improves spatial and temporal resolution of traffic
- Simple metrics on standard noise measurements !!!
- Multidisciplinary advantages !!!
 - Enables disentanglement of traffic and meteorological effects in air pollution exposure
 - Activity specific and Route sensitive models (μLURs in PhD)
- Future applications:
 - Advances in noise mapping, annoyance evaluations, quality of life, personal exposure for epidemiologists and beyond...